I. DATOS DEL PROGRAMA YLA ASIGNATURA		
NOMBRE DEL PROGRAMA	MAESTRÍA EN CIENCIAS EN EL USO, MANEJO Y	
	PRESERVACIÓN DE LO	
	RECURSOS NATURALES	
NOMBRE DE LA	BIOTECNOLOGIAMARINA	
ASIGNATURA		
CLAVE	9326	

TIPO DE ASIGNATURA	OBLIGATORIA		OPTATIVA	X
--------------------	-------------	--	----------	---

TIPO DE	TEÓRICA	X	PRÁCTICA	TEÓRICA-	
ASIGNATURA				PRÁCTICA	

NÚMERO DE HORAS	64
NÚMERO DE CRÉDITOS	8
FECHA DE ÚLTIMA ACTUALIZACIÓN	22/08/2025

		SNI
RESPONSABLES DE LA	Norma Yolanda Hernández Saavedra	15657
ASIGNATURA	Cesar Salvador Cardona Félix	207312
	Crisalejandra Rivera Pérez	173780
PROFESORES	Patricia Hernandez Cortes	15421
PARTICIPANTES	Mónica Reza Sánchez	206367
	Felipe Ascencio Valle	13866
	Cesar Salvador Cardona Félix	207312
	Norma Yolanda Hernández Saavedra	15657

II. DESCRIPCIÓN DEL CONTENIDO DEL PROGRAMA DEL CURSO O ASIGNATURA

A) OBJETIVOS GENERALES

El curso de biotecnología marina le permitirá al alumno adquirir un amplio cuerpo de conocimientos teóricos y metodológicos acerca ecosistemas y organismos, así como las aplicaciones de la biotecnología marina, principalmente enfocado en el área de la bioprospección y cribado de metabolitos secundarios de alto valor potencial, así como en conservación de recursos naturales marinos.

El alumno adquirirá conocimientos sobre el desarrollo de biotecnologías y herramientas analíticas y uso de sistemas marinos enfocados en la solución de problemas ambientales, en medicina y en la generación de productos industriales.

TEMAS	SUBTEMAS	
PARTE 1. CONCEPTOS BÁSIC	COS	14
		h

UNIDAD 1.1. ¿QUÉ E S A BIOTECNOLOGÍA?	
1. Concepto de biotecnología	
2. Historia de la biotecnología	
3. Biotecnología: campos de aplicación	Industria farmacéutica Industria alimentaria Industria medioambiental Industria agropecuaria Herramientas de diagnóstico
4. Biotecnología en la actualidad	

UNIDAD 1.2. ASPECTOS BIOLÓGICOS ESENCIALES			
Nociones básicas de biología	Plancton		
marina	Necton		
	Bentos		
	Sistemas litoral y profundo		
Biotecnología en colores			
Avances y situación de la biote	cnología en México ym e lundo		
4. Herramientas en biotecnología			
5. El mar como fuente de recurso	s marinos		
UNIDAD 1.3. BIOTECNOLOGÍA N	MARINA		
1. Introducción a la Áreas de trabajo de la biotecnología			
biotecnología marina	marina		
	Campos de aplicación de la Biotecnología		
	marina		
El sector de la biotecnología marina			
3. Principales técnicas o estrategias empleadas			
4. Organismos marinos de interés industrial			
5. La biotecnología marina en la a	5. La biotecnología marina en la actualidad		

PARTE 2. GRUPOS FUNCIONALES: APLICACIONES	
BIOTECNOLÓGICAS VISOS POTENCIALES	ا م

UNIDAD 2.1. PLANCTON	
1. El fitoplancton	Características generales del fitoplancton
Importancia del fitoplancton	пторіальстоп
· · · · · · · · · · · · · · · · · · ·	D: 4
3. Organismos que componen	Diatomeas
el fitoplancton	Dinoflagelados
	Cocolitofóridos
	Cianófitas o algas verdeazules

4. Zooplancton	Características generales del
	zooplancton
	Importancia del zooplancton
	Organismos que componen el
	zooplancton
UNIDAD 2.2. BENTOS	
1. Bentos	1. Funciones de bentos

	Características generales de las
	comunidades bentónicas
	Comunidades bentónicas de mayor
	biodiversidad
2. Fitobentos	Funciones del fitobentos
	Características generales de las
	comunidades fitobentónicas
	Comunidades fitobentónicas de mayor
	biodiversidad
3. Morfología y aplicaciones de	Algas rojas: descripción y características
algas	generales (RHODOPHYTA)
	Algas verdes: descripción y
	características generales
	(CHLOROPHYTA)
	Algas pardas: descripción y
	características
	generales (PHAEOPHYCEAE)
UNIDAD 2.3. OTROS ORGANISM	MOS BENTÓNICOS
1. Organismos bentónicos	Cordados (ascidias)
(Morfología,biología y	Cnidarios (anémonas, corales)
aplicaciones)	Porífera (esponjas),
	Equinodermos (estrellas, erizos, pepinos
	de mar)
	Moluscos (caracoles, bivalvos),
	Anélidos (poliquetos),
	Artrópodos (cangrejos, camarones)
	Fanerógamas (valoæcológico y
	biotecnológico)
	Hongos (valor ecológico y biotecnológico)
	Líquenes (valor ecológico y
	biotecnológico)
	Microbentos
UNIDAD 2.4. NECTON	
1. El necton (definición)	
Características generales del n	ecton
3. Importancia del necton	
Organismosque componen	Cordados (peces, mantarrayas,
el necton	tiburones, ballenas, tortugas)
	Moluscos (calamares, pulpos)

UNIDAD 3.1. BIOTECNOLOGÍA MARINA (ROJA)	
1. Introducción a la biotecnología marina aplicada a la salud	Organismos marinos como fuentes prometedoras de nuevos fármacos Proceso de descubrimiento de medicamentos de origen marino Caso estudio: elaboración de fármacos por FARMAMAR
Herramientas: cultivo de células animales y vegetales	Condiciones necesariaspara el desarrollo de los patógenos Preparación de los medios de cultivo
Producción de proteínas terapéuticas en cultivos de células animales	Historia y evolución del cultivo de células animales para la producción de proteínas Implicación de proteínasterapéuticas en la medicina actual Metodología para la modificación genética de células vegetales
UNIDAD 3.2. BIOTECNOLOGÍA N	MARINA (GRIS)
	omposición de los contaminantes marinos
Vertidos: generación, tipología ycaracterísticas	Aguas residuales asimilables a urbanas Industriales Agrícolas forestales Otros
Determinación de los principales efectos de la contaminación marina	Contaminación sobre los seres vivos Cambios en el entorno Bio-deterioración y bio-incrustaciones (biofouling) Minimización de los impactos en el medio
4. Modelos de biorremediación basados en biotecnología marina	Biotecnología marina aplicada a la limpieza de derrames de petróleo y otros contaminantes. Desarrollo de modelos de biorremediación basados en microorganismos marinos.
UNIDAD 3.3. MICROORGANISM	OS MARINOS DE INTERÉS BIOTECNOLÓGICO
Ecosistemas marinos como fuente de biodiversidad microbiana	Pastos marinos Costas rocosas Arrecifes coralinos Fosas hidrotermales Casquetes polares Ambientes hipersalinos
Metabolitos secundarios de microorganismos marinos y sus aplicaciones	Compuestos bioactivos Aplicaciones farmacéuticas Uso en la industria alimentaria

3. Usos en biología molecular	Adaptaciones moleculares: estrategias
de microorganismos	de sobrevivencia en condiciones
extremófilos marinos	extremas.
	Identificación de genes con potencial
	biotecnológico.
	Uso de enzimas marinas termoestables
	en la
	biotecnología molecular

III. PROCEDIMIENTO O INSTRUMENTOS DE EVALUACIÓN

Las evaluaciones de cada parte (3 partes, 3 evaluaciones) se realizarán al finalizar cada una, en donde se considerarán los temas vistos y/o aquellos trabajos encomendados por el profesor. Cada profesor (responsable de cada parte) definirá el método de evaluación y se lo dará a conocer a los estudiantes al inicio de cada una.

Al finalizar el curso se promediarán las calificaciones correspondientes a cada parte (parciales) considerando para la calificación final el promedio ponderado de las mismas.

BIBLIOGRAFÍA

Tincu, JA and SW Taylor. 2004. Antimicrobial Peptides from Marine Invertebrates. Antimicrob Agents Chemother 48(10): 3645–3654. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC521913/.

Muktar Y, S. Tesfaye, and B. Tesfaye. 2016. Present Status and Future Prospects of Fish Vaccination: A Review. J Veterinar Sci Technol 7:299. http://www.omicsonline.org/open-access/present-status-and-future-prospects-of-fish-vaccination-a-review-2157-7579-1000299.php?aid=70000.

Thakur, NL and AN Thakur. 2006. Marine Biotechnology: An Overview. Indian Journal of Biotechnology 5: 263-268.

Pomponi, SA. 1999. The Potential for the Marine Biotechnology Industry. In Trends and Future Challenges for U.S. National Ocean and Coastal Policy. DIANE Publishing: Delaware, USA. 143 pages.

Montaser, R and H Luesch. 2011. Marine Natural Products: A New Wave of Drugs? Future Med Chem 3(12):1475-89. https://www.ncbi.nlm.nih.gov/pubmed/21882941.

Mayekar, TS, AA Salgaonkar, JM Koli, P. Patil, A. Chaudhari, A. Murkar, S. Salvi, D. Surve, R. Jadhav, T. Kazi. Marine Biotechnology: Bioactive Natural Products and their Applications. http://aquafind.com/articles/Marine-Biotechnology.php.

Rothamsted Research. The First GM Oilseed Crop to Produce Omega-3 Fish Oils in the Field. 2015. http://www.rothamsted.ac.uk/news-views/first-gm-oilseed-crop-produce- omega-3-fish-oils-field. Thakur, NL and AN Thakur. 2006. Marine Biotechnology: An Overview. Indian Journal of Biotechnology 5: 263-268.

Milton Fingerman. 2003. Recent Advances in Marine Biotechnology, Vol. 10: Molecular Genetics of Marine.

Rasmussen RS, Morrissey MT. Marine biotechnology for production of food ingredients. Adv Food Nutr Res. 2007;52:237-92. doi: 10.1016/S1043-4526(06)52005-4.

