I. DATOS DEL PROGRAMA Y LA ASIGNATURA					
NOMBRE	NAAFOTE	NA EN OUENOLAG EN EL LIGO MANIETO V			
DEL		NÁ EN CIENCIAS EN EL USO, MANEJO Y			
PROGRAMA	PRESER	RVACIÓN DE LOS RECURSOS NATURALES			
NOMBRE DE					
LA	Ecología del reclutamiento de especies explotadas				
ASIGNATURA					
CLAVE	9508				

TIPO DE	OBLIGATORI	OPTATIVA	V
ASIGNATURA	Α	OPTATIVA	^

TIPO DE	TEÓDICA	PRÁCTIC	TEÓRICA-	V
ASIGNATURA	TEÓRICA	Α	PRÁCTICA	X

NÚMERO DE HORAS	60
NÚMERO DE CRÉDITOS∗	6
TRIMESTRE EN EL QUE SE IMPARTIRÁ	mayo-agosto
FECHA DE ÚLTIMA ACTUALIZACIÓN	2025/08/11

^{*} Cada crédito equivale a ocho horas de clases teóricas, 16 horas de clases prácticas o 30 horas de trabajo de investigación.

RESPONSABLE	
DE LA	EUGENIO ALBERTO ARAGÓN NORIEGA
ASIGNATURA	
SUPLENTE DE LA ASIGNATURA	EDGAR ALCÁNTARA RAZO
PROFESORES PARTICIPANTES	EUGENIO ALBERTO ARAGÓN NORIEGA EDGAR ALCÁNTARA RAZO

II. DESCRIPCIÓN DEL CONTENIDO DEL PROGRAMA DEL CURSO O ASIGNATURA

A) OBJETIVO GENERAL: Introducir al estudiante a la teoría y modelos sobre reclutamiento de especies explotadas, proporcionando al estudiante los principios

básicos del análisis e interpretación de resultados.

Objetivos específicos:

Aplicar tasas de verosimilitud para seleccionar modelos de reclutamiento Calcular estimadores y pesos de Akaike para seleccionar modelos Entender la Inferencia al usar muchos modelos de reclutamiento

B) DESCRIPCIÓN DEL CONTENIDO		
TEMAS Y SUBTEMAS	TIEMPO	
	(Horas)	
Tema I. Conceptos generales	10	
Subtema I.1 Definición de Recurso pesquero	1	
Subtema I.2 Definición de Stock	1	
Subtema I.3 Definiciones de reclutamiento	1	
Subtema I.4 Modelos generales de reclutamiento	2	
Subtema I.5 Modelos típicos de reclutamiento	2	
Subtema I.6 Modelos no compensatorios	1	
Subtema I.7 Relevancia del reclutamiento para el manejo pesquero	2	
Tema II. Principios biológicos del reclutamiento	6	
Subtema II.1 Reclutamiento a la zona, al arte de pesca y al stock	2	
Subtema II.2 Primeros estadios en el ciclo de vida de especies marinas	2	
Subtema II.3 Principios ecológicos asociados al reclutamiento	2	
Tema III. Grupos de especies explotadas		
Subtema III.1 Biología de crustáceos		
Subtema III.2 Biología de peces	2	
Subtema III.3 Biología de moluscos	2	

Tema IV. Aspectos físicos que influyen sobre el reclutamiento		8
Subtema IV.1 Advección	2	
Subtema IV.2 Corrientes de marea, inducidas por el viento y geostróficas	2	
Subtema IV.3 Dispersión	2	
Subtema IV.4 Frentes y remolinos	2	
Tema V. Reclutamiento en especies explotadas		6
Subtema V.1 Reclutamiento en crustáceos	2	
Subtema V.2 Reclutamiento en peces	2	
Subtema V.3 Reclutamiento en moluscos	2	
LABORATORIO		
Tema I de Laboratorio. Análisis de datos:		12
Subtema 1. Estimación de parámetros.	2	
Subtema 2. Funciones objetivo. Construcción y bases teóricas.	2	
Subtema 3. Funciones de densidad probabilística aplicadas a estimación de parámetros.	2	
Subtema 4. Aplicación de un algoritmo SSQ.	2	
Subtema 5. Algoritmo de distribución normal, lognormal.	2	
Subtema 6. Estimación de intervalos de confianza	2	
Tema II de Laboratorio. Inferencia multi modelos		12
Subtema 1. Modelos múltiples. Naturaleza del problema.	2	
Subtema 2. Estimación de tasas de verosimilitud.	2	
Subtema 3. Alcances del enfoque clásico de R2 y CV.	2	
Subtema 4. Cálculo del estimador y pesos de Akaike.	2	
Subtema 5. Seleccionando el mejor modelo.	2	
Subtema 6. Inferencia desde modelos múltiples.	2	
TOTAL		60

III. BIBLIOGRAFÍA

Los libros listados son altamente recomendables como básicos para el desarrollo del curso. Las lecturas respectivas a artículos científicos serán dadas por el profesor del curso a lo largo del mismo.

Libros

- Burnham K. P., & D. R. Anderson. 2002. Model Selection and Multi-model Inference: A Practical Information-Theoretic Approach. Second edition, Springer, New York. 488 pp.
- Haddon M. 2001. Modeling and Quantitative Methods in Fisheries. Chapman-Hall, Florida. 406 pp.
- Hilborn R. & C. J. Walters. 1992. Quantitative fisheries stock assessment, choice, dynamics & uncertainty. Chapman and Hall: New York. 520 pp.
- Hilborn R. and M. Mangel. 1997. The Ecological Detective. Confronting Models with Data. Princeton University Press, Princeton. 315 pp.
- King M. 2007. Fisheries biology, assessment and management. Second edition, Fishing News Books. Victoria, Australia. 382 pp
- Ricker W.E. 1975. Computation and Interpretation of Biological Statistics of Fish Populations, Bull. Fish. Res. Board Can. 191:382 pp.
- Sparre P. & S.C. Venema. 1995. Introducción a la evaluación de recursos pesqueros tropicales. Parte 1. Manual. FAO Documento Técnico de Pesca no. 306.1 Rev., 440 pp.

Artículos

- García, S. y L. Le Reste 1981. Life cycles, dynamics, exploitation and management of coastal penaeid shrimp stocks. FAO Fish. Tech. Pap., (203): 215 p.
- Garcia S.M. 1996. Stock-Recruitment Relationships and Precautory Approach to Management of Tropical Shrimp Fisheries. Mar Freshwater Res. 47: 43-58
- Watson, R. A., C. T. Turnbull y K. J. Derbyshire 1996. Identifying tropical Penaeid recruitment patterns. Mar. Freshwater res. 47:77-85.

Referencias selectas cuya publicación sea menor a un año para el trimestre en que se imparta el curso.

IV. PROCEDIMIENTO O INSTRUMENTOS DE EVALUACIÓN

Actividades de aprendizaje

El sistema de aprendizaje se basará en las clases teóricas y en el desarrollo del trabajo práctico en el laboratorio, así como la consulta bibliográfica de libros, de artículos científicos de actualidad, consultas y acceso a recursos en Internet. Uso de equipo de cómputo y software especializado. Uso del área del laboratorio especializado en pesquerías para el desarrollo de prácticas.

Evaluación

La evaluación se sustentará en la participación del estudiante en las diferentes actividades requeridas para completar el curso. Habrá 2 exámenes parciales. Cada estudiante entregará un trabajo final relacionado con un caso de estudio de reclutamiento. Los reportes de laboratorio consistirán en entregas por escrito de cada práctica realizada.

Exámenes: 60% Participación (tareas, prácticas): 20 %

Reporte de un estudio de caso: 20%

